Brain-Inspired Deep Networks for Facial Expression Recognition
نویسندگان
چکیده
منابع مشابه
Deep generative-contrastive networks for facial expression recognition
As the expressive depth of an emotional face differs with individuals, expressions, or situations, recognizing an expression using a single facial image at a moment is difficult. One of the approaches to alleviate this difficulty is using a video-based method that utilizes multiple frames to extract temporal information between facial expression images. In this paper, we attempt to utilize a ge...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملConvolutional Neural Networks for Facial Expression Recognition
We have developed convolutional neural networks (CNN) for a facial expression recognition task. The goal is to classify each facial image into one of the seven facial emotion categories considered in this study. We trained CNN models with different depth using gray-scale images. We developed our models in Torch [2] and exploited Graphics Processing Unit (GPU) computation in order to expedite th...
متن کاملFacial Expression Recognition Using Deep Belief Network
Emotional understanding and expression is a fundamental basis for human-computer interaction, and how to read the human mind through facial expression recognition technology has become a hot issue. Large dimension of image data, sample calibration difficulties, and small size training sample set make the efficient facial expression recognition task difficult. DBN (Deep Belief Network) achieves ...
متن کاملBrain-Inspired Deep Networks for Image Aesthetics Assessment
Image aesthetics assessment has been challenging due to its subjective nature. Inspired by the scientific advances in the human visual perception and neuroaesthetics, we design Brain-Inspired Deep Networks (BDN) for this task. BDN first learns attributes through the parallel supervised pathways, on a variety of selected feature dimensions. A high-level synthesis network is trained to associate ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Biomedical Technologies
سال: 2020
ISSN: 2345-5837
DOI: 10.18502/fbt.v7i3.4619